metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Danielle Ballivet-Tkatchenko,* Romain Burgat, Laurent Plasseraud and Philippe Richard

LSEO UMR 5188 CNRS, Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France

Correspondence e-mail: ballivet@u-bourgogne.fr

Key indicators

Single-crystal X-ray study T = 110 KMean σ (C–C) = 0.005 Å Disorder in main residue R factor = 0.027 wR factor = 0.057 Data-to-parameter ratio = 20.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

The ionic tin(IV) complex tri- μ_2 -methoxy- μ_3 -oxotris[di-*tert*-butyltin(IV)] tri- μ_2 -methoxy-bis[*tert*butyldimethoxystannate(IV)]

The solid-state of the title compound, $[Sn_3(C_4H_9)_6(CH_3O)_3O]$ - $[Sn_2(C_4H_9)_2(CH_3O)_7]$, consists of distinct $[{}^tBu_6Sn_3(\mu$ -OCH₃)₃- $(\mu_3$ -O)]⁺ cations and $[{}^tBu_2Sn_2(OCH_3)_4(\mu$ -OCH₃)₃]⁻ anions, apparently formed as a result of slow hydrolysis of pure di(*tert*-butyl)dimethoxystannane, ${}^tBu_2Sn(OCH_3)_2$. In the monocation, the coordination about the Sn atoms is distorted trigonal bipyramidal, and, in the monoanion, distorted octahedral. The trigonal bipyramidal arrangement induces planarity of the Sn₃O₄ motif.

Comment

Our interest in the reactivity of Sn - OR bonds of di(*n*-butyl)dialkoxystannanes toward CO_2 insertion (Ballivet-Tkatchenko *et al.*, 2000) has been extended to di(*tert*-butyl)dialkoxystannanes. For this purpose, the synthesis of 'Bu₂Sn(OCH₃)₂ was achieved and crystals of the title compound, (I), were formed from liquid 'Bu₂Sn(OCH₃)₂ upon standing under argon for one month at room temperature.

Comparison of the empirical formulae of the two compounds allows us to write a reaction stoichiometry involving hydrolysis due to water in trace amounts:

 $5[{}^{t}Bu_{2}Sn(OCH_{3})_{2}] + H_{2}O \rightarrow [{}^{t}Bu_{6}Sn_{3}(OCH_{3})_{3}O]^{+}[{}^{t}Bu_{2}Sn_{2}(OCH_{3})_{7}]^{-} + 2{}^{t}BuH.$

The main features of the reaction are conservation of the Sn:OCH₃ ratio, the presence of an extra O atom in the product, and cleavage of two $Sn^{-t}Bu$ bonds. The X-ray diffraction analysis of (I) reveals an ionic structure with no significant non-ionic intermolecular contacts. The monocation $[{}^{t}Bu_{6}Sn_{3}(OCH_{3})_{3}O]^{+}$ adopts approximate D_{3h} symmetry (Fig. 1). The three Sn atoms are pentacoordinated in a distorted trigonal bipyramidal arrangement (TBP). The equatorial plane is occupied by the two *tert*-butyl groups [C- $Sn-C = 119.6 (8)^{\circ}$ (mean) and Sn-C = 2.189 (6) Å (mean)and the μ_3 -O atom [C-Sn-O4 = 120 (3)° (mean) and Sn-O4 = 2.016 (2) Å (mean)], while the μ -OCH₃ groups are in the axial positions $[O-Sn-O = 136.9 (2)^{\circ} (mean) and Sn-O =$ 2.230 (16) Å (mean)]. The three TBPs share the equatorial μ_3 -O4 atom, being connected pairwise via an O4-OCH₃ edge. The Sn_3O_4 core is planar (seven atoms r.m.s. deviation =

Received 4 February 2004 Accepted 14 May 2004 Online 22 May 2004

ORTEPIII (Burnett & Johnson, 1996) view of the cationic moiety of the title compound (30% probability displacement ellipsoids). For clarity, the H atoms are not shown. Both disordered components are shown.

0.04 Å). Interestingly, in the compound $\{[(CH_3)_3Sn]_3O\}Cl$ described as a tritin oxonium salt, the $Sn_3\mu_3$ -O core is also planar with pentacoordination about Sn atoms (Räke et al., 1999). The O-capped structure has been observed for neutral tritin compounds in which Sn atoms are hexacoordinated, as, for example, {[n-BuSn(OH)O₂PPh₂]₃O}{Ph₂PO₂} (Day et al., 1987) and $Sn_3(O^iBu)_7(\mu - O^iBu)_3(\mu_3 - O) \cdot 2^iBuOH$ (Reuter & Kremser, 1992). The monoanion $[{}^{t}Bu_{2}Sn_{2}(OCH_{3})_{7}]^{-}$ in (I) adopts approximate C_s symmetry (Fig. 2). It is formed by facesharing distorted octahedra built about Sn4 and Sn5, with no significant Sn-Sn bonding interaction [Sn4···Sn5 3.1762 (3) Å]. The three μ -OCH₃ ligands are equidistant from the two Sn atoms, as in the monocation, with similar Sn-O mean bond lengths of 2.166 (12) and 2.230 (16) Å, respectively. That with the terminal OCH₃ is shorter [2.022 (6) Å], as expected. The two tert-butyl groups adopt a syn configuration. The Sn-C mean bond length is very similar to that of the cation, 2.182 (3) and 2.189 (6) Å, respectively. The $[^{t}Bu_{2}Sn_{2}(OCH_{3})_{4}(\mu - OCH_{3})_{3}]^{-}$ fragment can be visualized as a variant of the ionic structure $[I_6Sn_2(\mu-O^iC_3H_7)_3]^-$ (Veith *et al.*, 1997).

Experimental

The title compound separated as clear transparent crystals from liquid ^tBu₂Sn(OCH₃)₂ upon storage in a Schlenk tube under argon atmosphere over a period of two months at room temperature. A single crystal of (I) was selected for X-ray structure determination at 110 K. The precursor compound, ^tBu₂Sn(OCH₃)₂, was prepared from ^tBu₂SnCl₂ (Kandil & Allred, 1970) and sodium methoxide according to an adapted procedure (Ballivet-Tkatchenko et al., 2000). Final purification by vacuum distillation (2 \times 10⁻² mbar) at 313 K led to the colorless oil ^tBu₂Sn(OCH₃)₂. Analysis calculated for C₁₀H₂₄O₂Sn: C 40.72, H 8.20%; found: C 40.79, H 8.09%. NMR (CDCl₃, 300 K, p.p.m.): ¹³C{¹H} (75.46 MHz, ¹³CDCl₃ = 77.00): 54.70 (OCH₃), 39.77 $[{}^{1}J^{13}C, {}^{119}Sn = 470 \text{ Hz}, {}^{1}J^{13}C, {}^{117}Sn = 450 \text{ Hz}, C(CH_3)_3], 29.88$

ORTEPIII (Burnett & Johnson, 1996) view of the anionic moiety of the title compound (30% probability displacement ellipsoids). For clarity, the H atoms are not shown. Both disordered components are shown.

 $[C(CH_3)_3]; {}^{119}Sn{}^{1}H [111.92 \text{ MHz}, {}^{119}Sn(CH_3)_4 = 0], -108; {}^{1}H$ (300.13 MHz, CHCl₃ = 7.24), 3.81 (OCH₃), 1.37 [C(CH₃)₃] (1:3).

Crystal data

$Sn_3(C_4H_9)_6(CH_3O)_3O]$ -	Z = 4
$[Sn_2(C_4H_9)_2(CH_3O)_7]$	$D_x = 1.582 \text{ Mg m}^{-3}$
$M_r = 1376.79$	Cell parameters from 23 813
Monoclinic, $P2_1/c$	reflections
a = 11.5912(1) Å	$\theta = 1-27.5^{\circ}$
b = 21.7257(2)Å	$\mu = 2.18 \text{ mm}^{-1}$
c = 22.9487 (2) Å	T = 110 (2) K
$\beta = 90.7188 \ (4)^{\circ}$	Prism, colorless
$V = 5778.65 (9) \text{ Å}^3$	$0.5 \times 0.4 \times 0.4 \text{ mm}$

 $R_{\rm int} = 0.032$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -15 \rightarrow 15$ $k = -28 \rightarrow 27$

 $l = -21 \rightarrow 29$

Data collection

Nonius KappaCCD diffractometer φ scans ($\kappa = 0$) + additional ω scan Absorption correction: none 39 184 measured reflections 13 216 independent reflections 10 643 reflections with $I > 2\sigma(I)$

Refinement

S

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0215P)^2]$		
$R[F^2 > 2\sigma(F^2)] = 0.028$	+ 5.4899 <i>P</i>]		
$wR(F^2) = 0.057$	where $P = (F_o^2 + 2F_c^2)/3$		
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.011$		
13216 reflections	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$		
644 parameters	$\Delta \rho_{\rm min} = -0.97 \text{ e} \text{ Å}^{-3}$		
H-atom parameters constrained			

Table 1

Selected bond distances (Å).

Sn1-O4	2.0145 (19)	Sn3-O3	2.243 (2)
Sn1-C8	2.193 (3)	Sn4-O6	2.018 (2)
Sn1-C4	2.198 (3)	Sn4-O5	2.028 (2)
Sn1-O3	2.205 (2)	Sn4-O10	2.153 (2)
Sn1-O1	2.240 (2)	Sn4-O9	2.162 (2)
Sn2-O4	2.0144 (19)	Sn4-C35	2.181 (4)
Sn2-C12	2.179 (3)	Sn4-O11	2.184 (2)
Sn2-C16	2.185 (3)	Sn4-Sn5	3.1763 (3)
Sn2-O2	2.2231 (19)	Sn5-O8	2.016 (2)
Sn2-O1	2.248 (2)	Sn5-O7	2.027 (2)
Sn3-O4	2.0180 (19)	Sn5-O11	2.157 (2)
Sn3-C24	2.188 (3)	Sn5-O9	2.1641 (19)
Sn3-C20	2.189 (3)	Sn5-O10	2.174 (2)
Sn3-O2	2.2156 (19)	Sn5-C39	2.178 (3)

Three tert-butyl groups (two for the cation and one for the anion) were found to be disordered over two positions [occupancies: C5,C6,C7/C5A,C6A,C7A 0.489 (5):0.511 (5); C9,C10,C11/C9A, C10*A*,C11*A* 0.56 (1):0.44 (1); C40,C41,C42/C40*A*,C41*A*,C42*A* 0.60 (1):0.40 (1)]. Two C atoms of the anion exhibit large displacement ellipsoids; each of these atomic positions was then split over two sites [C37,C38/C37*A*,C38*A*; 0.67 (1)/0.33 (1)]. All H atoms were placed in idealized positions (C-H = 0.96 Å) and refined using a riding model [$U_{\rm iso}$ (H) = 1.5 $U_{\rm eq}$ (C)]. The torsion angle of the methyl groups in the methoxy groups was refined.

Data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DENZO–SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL*97 and *WinGX* (Farrugia, 1999)

The authors are grateful for financial support of this work from the Centre National de la Recherche Scientifique.

References

- Ballivet-Tkatchenko, D., Douteau, O. & Stutzmann, S. (2000). Organometallics, 19, 4563–4567.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Day, R. O., Holmes, J. M., Chandrasekhar, V. & Holmes, R. R. (1987). J. Am. Chem. Soc. 109, 940–941.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kandil, S. A. & Allred, A. L. (1970). J. Chem. Soc. A, pp. 2987-2992.
- Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Räke, B., Müller, P., Roesky, H. W. & Uson, I. (1999). Angew. Chem. Int. Ed. 38, 2050–2052.
- Reuter, H. & Kremser, M. (1992). Z. Anorg. Allg. Chem. 615, 137-142.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Veith, M., Mathur, S. & Huch, V. (1997). Chem. Commun. pp. 2197-2198.